Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 18, 2026
-
Free, publicly-accessible full text available August 1, 2026
-
Free, publicly-accessible full text available May 1, 2026
-
Free, publicly-accessible full text available February 3, 2026
-
Free, publicly-accessible full text available January 22, 2026
-
Anti-backdoor learning, aiming to train clean models directly from poisoned datasets, serves as an important defense method for backdoor attack. However, existing methods usually fail to recover backdoored samples to their original, correct labels and suffer from poor generalization to large pre-trained models due to its non end-to end training, making them unsuitable for protecting the increasingly prevalent large pre-trained models. To bridge the gap, we first revisit the anti-backdoor learning problem from a causal perspective. Our theoretical causal analysis reveals that incorporating both images and the associated attack indicators preserves the model's integrity. Building on the theoretical analysis, we introduce an end-to-end method, Mind Control through Causal Inference (MCCI), to train clean models directly from poisoned datasets. This approach leverages both the image and the attack indicator to train the model. Based on this training paradigm, the model’s perception of whether an input is clean or backdoored can be controlled. Typically, by introducing fake non-attack indicators, the model perceives all inputs as clean and makes correct predictions, even for poisoned samples. Extensive experiments demonstrate that our method achieves state-of-the-art performance, efficiently recovering the original correct predictions for poisoned samples and enhancing accuracy on clean samples.more » « lessFree, publicly-accessible full text available January 22, 2026
An official website of the United States government

Full Text Available